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Abstract
A potential representation for the subset of travelling solutions of nonlinear
dispersive evolution equations is introduced. The procedure involves reduction
of a third-order partial differential equation to a first-order ordinary differential
equation. The potential representation allows us to deduce certain properties of
the solutions without the actual need to solve the underlying evolution equation.
In particular, the paper deals with the so-called K(n,m) equations. Starting
from their respective potential representations it is shown that these equations
can be classified according to a simple point transformation. As a result, e.g.,
all equations with linear dispersion join the same equivalence class with the
Korteweg–deVries equation being its representative, and all soliton solutions
of higher order nonlinear equations are thus equivalent to the KdV soliton.
Certain equations with both linear and quadratic dispersions can also be treated
within this equivalence class.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

The description of a physical system under extreme conditions, e.g., large amplitude
excitations, requires more than a linear theory. However, since dissipation is normally only
effective over large timescales, it can be neglected, at least in the first approximation, leaving a
nonlinear dispersive partial differential equation for describing the behaviour of such a system.
In particular, one typically has to deal with third-order as well as first-order spatial derivatives
of a wavefunction u or powers of u, i.e. (um)xxx , which describe (nonlinear) dispersion, and
(un)x , which describe nonlinear convection, plus a dynamical term, namely, the time derivative
of the wavefunction, ut . The subscripts denote partial differentiation with respect to the index.
The dissipation would correspond to the second-order spatial derivative of the wavefunction.
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A special class of nonlinear dispersive evolution equations in (1 + 1) dimensions are
the so-called K(n,m) equations, (um)xxx − A(un)x + ut = 0 [1]. The most prominent
examples of these are the Korteweg–deVries (KdV) equation, K(2, 1), and the modified KdV
equation, K(3, 1). These forms are of particular interest because they can be used to describe
the motion of stable and localized solitary waves (solitons) that are observed in a variety
of physical systems. These forms are also of particular importance for various specialized
applications, such as data transfer in optical fibres [2] or as an analytical tool for an explanation
of cluster radioactivity [3] or nuclear fission [4].

The considerations in this paper will be carried out for the specific case of travelling wave
solutions. It will be shown that this restriction leads to a special representation of nonlinear
dispersive evolution equations called the potential representation (this concept has been used
previously, for example, in [5, 6]). This representation resembles an energy conservation
law with a nonrelativistic kinetic energy term as well as a potential energy. The potential
representation, being a first-order ordinary differential equation, constitutes an enormous
simplification of the original problem. The gross properties of the solutions can be read
directly from the potential function without the actual need to solve a differential equation.
The conditions for solitary waves and solitons can thus be easily stated qualitatively. The
investigation of the potential picture reveals that for solitons the degree of dispersion may
at most be linear, whereas solitary waves with compact support only exist in systems with
quadratic dispersion. These results are discussed in more detail for the specific cases of
systems that are modelled by K(n,m) equations.

By restricting our consideration to a particular subset of solutions, a K(n,m) equation can
be transformed into another K(N,M) equation by means of a simple point transformation.
This point transformation defines an equivalence relation between the various K(n,m)

equations and in doing so divides these equations into equivalence classes of connected
equations.

2. Potential representation

In this paper, the potential representation of a nonlinear evolution equation for travelling waves
u(x, t) = u(x − vt) = u(ξ) is defined as follows:

(uξ )
2 = −F(u). (1)

This notation is inspired by the fact that if ξ and u were identified with time and space,
respectively, the lhs of equation (1) may be associated with a nonrelativistic ‘kinetic’ energy,
and, accordingly, the rhs with the negative value of a ‘potential’ energy F(u). uξ is then
the ‘velocity’ of a particle moving along the u-axis. The evolution of u proceeds on the
zero-energy hypersurface in the phase space belonging to F(u).

2.1. Reformulation of the nonlinear evolution equation

We consider a general nonlinear dispersive evolution equation of an autonomous one-
dimensional non-dissipative dynamical system

D(u)xxx = C(u)x − ut . (2)

The ‘dispersion function’ D(u) and the ‘convection function’ C(u) have to be at least of class
C3 or C1, respectively. We focus on travelling solutions with velocity v so that the partial
differential equation (2) is reduced to the ordinary differential equation

D(u)ξξξ = C(u)ξ + vuξ . (3)
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One may combine the terms on the right-hand side writing (the prime indicates differentiation
with respect to the argument)

C(u)ξ + vuξ = C ′(u)uξ + vuξ = V(u)uξ

and integrate equation (3) once

D(u)ξξ =
∫ u

0
dtV(t) − C1 (4)

with an arbitrary constant C1. We then use (1) and

D(u)ξξ = D′′(u)(uξ )
2 + D′uξξ

to find the differential equation defining the potential function F(u),

1

2
D′(u)F ′(u) + D′′(u)F(u) +

∫ u

0
dtV(t) − C1 = 0. (5)

Multiplication with D′(u) turns (5) into(
1

2
(D′(u))2F(u)

)′
+ D′(u)

∫ u

0
dtV(t) − D′(u)C1 = 0

which yields

F(u) = 2C1D(u)

(D′(u))2
+

2C2

(D′(u))2
− 2

(D′(u))2

∫ u

0
dyD′(y)

∫ y

0
dtV(t)

C2 also being an arbitrary constant. Thus casting equation (2) in the potential representation
(1) reduces the original problem of integration to a quadrature that can be solved by separation
of variables yielding ξ as a function of u:

ξ(u) =
∫ u

0

dy√−F(y)
. (6)

The inversion of this function is a challenging task, which in many cases may not be possible.
In the following, we simplify the considerations to dispersion functions being a simple

power of the wavefunction D(u) = um. F(u) is then found to be

F(u) = C1u
2−m + C2u

2−2m − 2

m2
u3−m

∫ 1

0
dy(1 − ym)V(uy). (7)

Finally, we briefly mention for later purposes that the potential function for evolution
equations of the form

((u + γ )m)xxx = V(u)ux

with an arbitrary constant γ , is given by

F(u) = C1(u + γ )2−m + C2(u + γ )2−2m − 2

m2
(u + γ )3−m

∫ 1

0
dy(1 − ym)V(uy − (1 − y)γ ).

(8)

2.2. Analysis of the potential representation

Casting the original nonlinear dispersive evolution equation in the potential representation
associates with the wavefunction u(ξ) a spacetime (i.e. u − ξ ) trajectory of a particle moving
in the potential F(u) with zero total energy. Different types of solutions of the original
nonlinear evolution equation can be attributed to different kinds of trajectories in this phase
space. For example, closed trajectories in bounded regions of the phase space correspond
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to periodic solutions, whereas solitary wave solutions are represented in phase space by
separatrix trajectories [7]. In the following, the properties and conditions of solitary waves
and of solitary waves with compact support are discussed in more detail. However, the
so-called kinks, solitary waves which are represented in phase space by separatrix trajectories
with two cusps, are not considered.

2.2.1. Solitons. In the potential representation, necessary and sufficient conditions for
solitary waves read

F(a) = F ′(a) = 0 F ′′(a) � 0
(9)

F(b) = 0 F ′(b) �= 0 a < b.

That is, the potential function must have at least a two-fold zero at a point u = a with negative
or vanishing curvature and must have a zero at b > a with nonvanishing slope. In addition,
F(u) must not have singularities in the interval [a, b], and therefore F ′(b) > 0. The reasons
underlying (9) are as follows: a particle at u = a is at rest (the potential energy is equal to the
total energy) and does not experience any force (the gradient of the potential is zero). It takes
the particle infinitely long to leave this point. It moves in a positive u-direction, is reflected
at u = b, moves back in a negative u-direction and reaches a again after another infinite time
span, i.e. lim|ξ |→∞ u(ξ) → a, u(0) = b. The simple zero of the potential function, b, thus
corresponds to the amplitude of the solitary wave.

Localized solitary waves (solitons) require a = 0. For dark solitary waves, i.e. solitary
waves with negative amplitude, F(u) has to fulfil (9) with b < a (the expression dark soliton
has been introduced in the context of nonlinear optical pulse propagation [8]).

For a more detailed analysis of the implications of (9) let us assume in addition to
D(u) = um that V(u) is continuous in the interval [a, b]. Using Weierstrass’ theorem one
can thus make the general ansatz V(u) = ∑

aiu
i . Here we also assume a0 �= 0 due to the

dynamical term.
One finds that for any m > 0, C1 = C2 = 0, whereas for m < 0, C1 and C2 may be

arbitrary. The range of m, however, is restricted to −1 < m � 1 where the lower bound stems
from the dynamical term and the existence of the integral in F(u). The upper bound also
originates from the dynamical term (m = 1 requires in addition a0 > 0).

Without any further specifications one may now study the asymptotic behaviour of the
localized solitary waves u(ξ) for |ξ | → ∞. We investigate the behaviour of lim|ξ |→∞ ξqu(ξ)

using (6) and the fact that ξ → ∞ corresponds to u → 0

lim
|ξ |→∞

ξqu(ξ) = lim
u→0

(∫ u

b

dy√−F(y)

)q

u. (10)

Here we have chosen the lower bound of the integral to be b corresponding to ξ = 0.
In the limit u → 0 we only have to consider the smallest powers of u in F(u) which,

supposed the integration constant C1 �= 0, for m < 0 is u2−m. The requirement that (10)
asymptotically goes to zero then leads to the inequality

q <
2

|m| .

Thus for any m in the range −1 < m < 0, u(ξ) converges faster than ξ−2. Precisely, for
−1 < m < 0 one finds that asymptotically (C1 �= 0) u(ξ) ∼ ξ−2/|m|. For 0 < m < 1 (10)
leads to the condition

q <
2

1 − m
.
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Only for m = 1 one finds that u(ξ) converges faster than any power of ξ . In this case the
evaluation of (10) yields limu→0 u lnq u = 0 for any q. This property is related to the fact that
F ′′(0) < 0 for m = 1 and F ′′(0) = 0 for |m| < 1.

We can easily deduce further properties of localized solitary wave solutions if in addition
we restrict our considerations to K(n,m)-type equations with m > 0. For K(n,m)-type
equations one has

V(u) = nAun−1 + v

that is

F(u) = − 2A

m(m + n)
un−m+2 − 2v

m(m + 1)
u3−m. (11)

With (9) one finds

v > 0 A < 0

b =
(

v(n + m)

(m + 1)|A|
) 1

n−1

.

That is, the soliton moves in positive x-direction (v > 0) and the parameter A has to be smaller
than zero. The amplitude of the soliton is proportional to the (n − 1)th root of the velocity.
For dark solitons, i.e. antisolitons, one instead finds A > 0 for n even and A < 0 otherwise.

Finally, one can deduce the basic properties of the width L of the soliton. The width is
calculated at a certain height of the soliton, e.g., at half the maximum height:

L = 2
∫ b

b/2

du√−F(u)
= 2

∫ b

b/2

du√
− 2|A|

m(n+m)
un−m+2 + vu3−m

m(m+1)

= 2

√
m(m + 1)

2vb1−m

∫ 1

1/2

du

u
√−un−m + u1−m

.

The last step follows with (m + 1)|A|/(v(n + m)) = b1−n. Thus

L ∼ 1√
vb1−m

∼ 1√
v

n−m
n−1

.

The soliton solutions of K(n, 1) equations have the form (see section 3.2)

u(ξ) = (±)n
(

(n + 1)v

2|A|
) 1

n−1 1

cosh
2

n−1

(
(n−1)

√
v

2 ξ
) .

2.2.2. Compact support solutions. In this section we will discuss localized solitary waves
with compact support, i.e.

u(ξ)

{�=0 if ξ ∈ (ξ1, ξ2)

=0 otherwise

which shall be called compact support solutions (CSS). These solutions were introduced as
compactons in [1]. u(ξ) being a solution of (2) requires D(u(ξ)) to be of class C3 and C(u(ξ))

and u(ξ) to be at least of class C1 at the boundary of the compact ξ interval. We will assume
again that D(u) = um, that V(u) is a continuous function of u and that the nonlinear dispersive
evolution equation contains a dynamical term. With the considerations about the continuity,
one finds in general that F(0) = uξ |ξ=ξ1,ξ2 = 0 and that C1 = C2 = 0 and m < 3. Employing
again the interpretation of the wavefunction u(ξ) as a spacetime trajectory, one finds similar
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to the soliton case in section 2.2.1 that the potential function F(u) must have a zero at u = b

(b denotes the amplitude of the CSS) in addition to the zero at u = 0 and is a continuous and
integrable function in the interval [0, b] with F(u) < 0. Since unlike the soliton the CSS does
not approach zero asymptotically but reaches it in a finite time ξ , the gradient of the potential
function must not vanish at the boundaries of the u-interval, or, equivalently, uξξ �= 0 for
ξ = ξ1, ξ2. This leads to

F(0) = 0 F ′(0) < 0
(12)

F(b) = 0 F ′(b) > 0.

With the condition for the derivative of the potential function at u = 0 (this condition has been
ignored in, e.g., [9]) one finally finds for CSS m = 2. Particularizing the considerations to
K(n,m) equations it further follows that

v > 0 A < 0
(13)

b =
(

v(n + 2)

3|A|
) 1

n−1

.

Similar to the soliton case, the amplitude is proportional to the (n − 1)th root of the velocity.
CSS with negative amplitude require both v < 0, i.e. they are moving in negative x-direction,
and either A > 0 for n odd or A < 0 otherwise.

In the same way as for the solitons one finds for the widths of a CSS the following relation:

L ∼
√

b

v
=
√

1

3

(v

3

) 2−n
2(n−1)

( |A|
(n + 2)

) −1
2(n−1)

. (14)

For n = 2 one thus finds the known result, that the width of the CSS is independent of its
speed or its height [1].

As examples for CSS we give the solutions of the K(2, 2) equation,

u(ξ) =




4v

3|A| cos2

(√|A|
4

ξ

)
for |√|A|ξ/4| � π/2

0 otherwise

(15)

and of the K(3, 2) equation,

u(ξ) =




√
5v

3|A|sn2

((
v|A|
240

) 1
4

ξ

∣∣∣∣∣− 1

)
for 0 � ξ �

(
240

v|A|
) 1

4 2√
2
K

(
1

2

)

0 otherwise

both clearly showing properties (13) and (14) found from the general analysis of the potential
function. In the latter solution, sn(x|m) denotes the Jacobian elliptic function sn(x|m) =
sin(am u) with the Jacobi amplitude am u and u = u(x,m) = ∫ x

0 dθ(1 −m sin2 θ)−1/2. K(m)

denotes the quarter period u(π/2,m) [10].
Particularly for the K(2, 2)-case we want to mention that a solution (15) added to a

constant δ is again a solution of a K(2, 2) equation. If u(ξ) solves the K(2, 2) equation
(u2)ξξξ = A(u2)ξ + vuξ with the potential function (see equation (11))

F(u) = −A

4
u2 − v

3
u

(with C1 = C2 = 0), then U(ξ) = u(ξ) + δ obeys, according to (8), the following potential
representation:

(Uξ )
2 = A

4
U 2 +

(
v

3
+

A

2
δ

)
U − A

4
δ2 − v

3
δ (16)
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for the transformed equation ((U − δ)2)ξξξ = A(U 2)ξ + (v − 2Aδ)Uξ . Equation (16) may,
however, as well be interpreted as the potential representation of a K(2, 2) equation with
C1 = −Aδ2/4 − vδ/3. The solution U(ξ) moves with the velocity V = v + 3/2|A|δ =
3/4|A|(b + 2δ), v being the velocity of u(ξ) [11, 12].

We want to make a last comment concerning the asymptotic behaviour of the solutions
of the general equation (2), especially since some of the solutions of the K(2, 2) equations
are known to develop from smooth initial data to blow-up numerical solutions [1, 13]. In
order to discuss the asymptotic behaviour of some general solutions of equation (2) we need
to investigate the conditions under which this equation admits singularities or a break-down.

It is commonly known under which conditions strong singularities can occur in nonlinear
systems spontaneously, or can develop from smooth initial data [14]. Moreover, it is rather
the exception than the rule that compact supported initial data develop smoothly up to infinity
and do not blow up after a finite time [1, 13].

One may use the characteristics procedure to prove or disprove the break-down of smooth
solutions of equation (2) in the sense that some solutions become infinite in finite time
(alternative stability conditions applied to the analysis of the stability of compact support
solutions may be found in [15]). If we write equation (2) in the form

�(t, x, u, p) = F(u) + p2 = 0

with the gradient p = ux , the characterstics system associated with this equation is

dt

ds
= 0

dx

ds
= ∂�

∂p
= 2p

dp

ds
= −p

∂�

∂u
= −pF ′(u)

du

ds
= p

∂�

∂p
= 2p2

where s is the parameter on the characteristics and (t, x, u, 0, p) are prescribed in such a
way that equation (2) holds at s = 0. There are two possible sources of singularities in this
system. The Jacobian ∂(t,x)

∂(s,u)
, which in our case is proportional to dξ/ds, may have vanishing

determinant, so that one expects the solution to be multi-valued. In this case a shock wave
formation can occur. Another possibility comes from the fact that u may be singular as a
function of the x variable, a case in which we can have a blow-up singularity. For equation (2)
the characteristics can be parametrized in the form

x = s t = y u = u0(y)

1 − su0(y)

where y = u|t=0 is the initial data, that is the coordinate on the initial surface.
The results show that in the nonlinear dispersive, non-dissipative dynamical systems

described above (dispersion function D(u) = um and V(u) being a continuous function of
u containing a constant term in the power expansion corresponding to a dynamical term)
soliton solutions may only occur if the degree of dispersion −1 < m � 1. For exactly linear
dispersion (m = 1) one finds soliton solutions that asymptotically vanish faster than any power
of ξ . The compact support solutions strictly require a quadratic dispersion (m = 2).

3. Classification of K(n, m) equations by a point transformation

3.1. General considerations

In this section it will be shown that K(n,m)-type equations with m,n � 1 can be transformed
into other K(N,M)-type equations with different arguments N and M. The applied (point)
transformation uniquely connects the elements of certain sets of K(n,m) equations. It
constitutes an equivalence relation between those connected equations and thus serves as
a tool to classify nonlinear dispersive evolution equations of K(n,m)-type. The benefit of this
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1 2 3 4

1

2

3

4

5

6

m
n

CSS

Solitons

Figure 1. The chart of K(n,m) equations. Any point on the lattice represents a K(n, m) equation.
Systems with linear dispersion m = 1 allow for soliton solutions whereas system with quadratic
dispersion m = 2 may have compact support solutions.

classification is clearly the fact that the solutions to any element (equation) of an equivalence
class can be traced back to the solution of the representative of this class. However, this
transformation requires one to restrict the considerations to a certain subset of travelling
solutions which is defined by fixing the initially arbitrary integration constants in the potential
representation C1 = C2 = 0. In the case of K(n, 1) or K(n, 2) equations this is the necessary
condition for solitons and compact support solutions which is summarized in figure 1 showing
a chart of K(n,m) equations.

The transformations of the potential representation, being a first-order ODE, are fully
covered by the theory of point transformations [17]. Here we choose the transformation
u(ξ) = ω±q(ξ) with a real number q which transforms the potential representation of a
nonlinear dispersive differential equation of type K(n,m) into the potential representation
of another K(N,M) equation. The derivation of this transformation is carried out in the
appendix. The transformation presented above allows for an entirely analytical treatment.

This simple point transformation suggests a diagram (figure 2) in which the K(n,m) and
the K(N,M) equations are connected via the respective potential representations. Thus, if
u(ξ) is a solution of the K(n,m) equation, ω(ξ) is a solution of the K(N,M) equation. The
subscript 0 of the potential function indicates the special choice C1 = C2 = 0.

M and N fulfil the relations

M = q(m − 1) + 1

N = q(n − 1) + 1

}
for u → ω+q (17)

M = q(n − m) + 1

N = q(n − 1) + 1

}
for u → ω−q . (18)
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F

F

(u)

(ω)

K(n,m)

+- q
u=ω

K(N,M)
0

0

Figure 2. The point transformation of the potential representations of K(n, m)-type equations.

K(n,m)

+- qu=ω

K(N,M)F (ω)
0

Figure 3. The transformation of K(n,m)-type equations via a point transformation using the
transformation property of the potential function as a consistency relation.

For M,N,m and n being integers, q can take on any rational number q = (N − 1)/(n − 1),
but in fact, the diagram remains valid for any value of q. Note, however, that although in this
way the K(n,m) equations may be transformed into equations with arbitrary, infinitesimal
nonlinearities n,m = 1 + ε, the resulting equations do not represent analytic continuations of
the linear cases and the respective solutions are not smoothly connected.

K(n,m) equations with m = (n + 1)/2 are, as a peculiarity of the transformation, again
transformed into equations with M = (N + 1)/2 by both (17) and (18).

The equation K(n,m) can be transformed directly into K(N,M). The diagram (figure 2)
can thus be closed (see figure 3) by using the potential representation of the K(N,M) equation
as a consistency relation, indicated by the dashed line. To see this one calculates explicitly for
case (17) with u = ω+q

(um)ξξξ = A(un)ξ + vuξ (ωmq)ξξξ = (ωq−1+M)ξξξ = A(ωnq)ξ + v(ωq)ξ . (19)

Expanding (ωq−1+M)ξξξ , equation (19) can be rearranged as

(ωM)ξξξ = −M(q − 1)(q + 2M − 4)ωM−3(ωξ )
2ωξ − 3

2
M(q − 1)ωM−2[(ωξ )

2]ξ

+
AM

ωq−1mq
(ωnq)ξ +

vM

ωq−1mq
(ωq)ξ (20)

!= A′(ωN)ξ + v′ωξ . (21)
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From the requirement that (20) equals a K(N,M) equation with coefficients A′ and v′ (21),
we infer also the existence of a potential representation

(ωξ )
2 = −F(ω) = 2A′

M(M + N)
ωN−M+2 +

2v′

M(+1)
ω3−M [(ωξ )

2]ξ = −F ′(ω)ωξ .

Here we have again made the special choice C1 = C2 = 0 which is a necessary condition for
the general case (see also the appendix). Inserting this condition for the squared derivative of
the transformed wavefunction ω into (20), one gets

(ωM)ξξξ = MAn

m
ωN−1ωξ +

Mv

m
ωξ − (q − 1)(q + 2M − 4)

(
2A′

(M + N)
ωN−1 +

2v′

(M + 1)

)
ωξ

− 3(q − 1)

(
A′(N − M + 2)

(M + N)
ωN−1 +

v′(3 − M)

(M + 1)

)
ωξ .

Comparing the last equation with (21) yields the conditions for the new coefficients:

Mn

m
A − 2(q − 1)(q + 2M − 4)

(M + N)
A′ − 3(q − 1)(N − M + 2)

(M + N)
A′ = NA′

M

m
v − 2(q − 1)(q + 2M − 4)

(M + 1)
v′ − 3(q − 1)(3 − M)

(M + 1)
v′ = v′

leading to

A′ = AM(M + N)

q2m(m + n)
(22)

v′ = vM(M + 1)

q2m(m + 1)
. (23)

Similarly, one obtains for case (18) a K(N,M) equation with coefficients

A′ = vM(M + N)

q2m(m + 1)
(24)

v′ = AM(M + 1)

q2m(m + n)
. (25)

One finds here that transformation (18) interchanges the nonlinear convection term and
the dynamical term. Transformation (18) is thus a purely mathematical relation between
the ODEs considered with any physical implication being removed. The fact that the
transformation does not seem to preserve invariants and integrability properties may be based
on this circumstance. The KdV equation, having an infinite countable set of invariants, can
for example be transformed into the K(2, 2) equation (see the next section), having only three
invariants [1, 16].

To illustrate this result, a chart of the K(n,m) equations shown in figure 4 gives
three sets of K(n,m) equations connected by the point transformation discussed, i.e. three
different equivalence classes. In fact, under the assumption of certain kinds of travelling
solutions, the latter being specified by a particular choice of integration constants in the
potential representation, any K(n,m) equation belongs to a certain equivalence class whose
representative is characterized by m and n with (m − 1) and (n − 1) having no common
divisors and n � 2m − 1. The latter restriction is based on the fact that any K(n,m)

equation with n < 2m − 1 is connected to a K(n,m) equation with n > 2m − 1 through
transformation (18).
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Figure 4. The chart of K(n, m) equations showing several connected sets (equivalence classes).

Finally, we want to mention a peculiarity arising for m = 1, q = 2. In this case the first
term on the rhs of equation (20) does not contribute and only the derivative of the potential
function F(ω) enters the transformation of the K(n, 1) equation. This allows the potential
function F(ω) to contain an arbitrary constant, corresponding to the term C2ω

2−2m = C2

in (7), and according to the transformation u = ω2,F(u) may additionally contain the term
4C2u

2−m = 4C2u. Here F(u) belongs to a K(n, 1) equation with the parameters A and
v and, accordingly, F(ω) is the potential function of a K(2n − 1, 1) equation with the
parameters A′ = n/(2(n + 1))A and v′ = v/4. In this way, pairs of K(n, 1) equations
become particularly connected. In [6] this property has been addressed especially for the pair
K(3, 1)–K(5, 1).

3.2. Example: the equivalence class of the KdV equation

The KdV equation reads

uξξξ = A(u2)ξ + vuξ .

According to section 2.2, we choose A < 0 to have soliton solutions. A soliton solution has
the form

u(ξ) = 3v

2|A|
1

cosh2
(√

v

2 ξ
) .
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Using the results from the previous section one can immediately state the solutions to any
K(N, 1) or K(N,N) equation (see figure 5). On the one hand, one finds that with the
transformation u = w+q solutions to K(N, 1) = K(q + 1, 1) equations read (the parameters
v and A have been expressed by the transformed parameters v′ and A′)

w(ξ) = (±)N
(

(N + 1)v′

2|A′|
) 1

N−1 1

cosh
2

N−1

(
(N−1)

√
v′

2 ξ
) .

As indicated by the resulting factor (±)N on the rhs one finds immediately that K(N, 1)

equations with a symmetric potential function, i.e. with odd N have both soliton and antisoliton
solutions. On the other hand, the solutions for the resulting K(N,N) = K(q + 1, q + 1)

equations of the transformation u = w−q read

w(ξ) = (±)N
(

2|v′|N
(N + 1)A′

) 1
N−1

cosh
2

N−1

(√
A′(N − 1)

2N
ξ

)
. (26)

To compare this result with the literature, e.g. [18], one needs to recall that the potential
function belonging to the transformed K(N,N) equation is just the negative of the potential
function of K(n, n) equations usually used in the literature. Changing the signs accordingly
results in the change ξ → iξ , i.e. the hyperbolic cosine in equation (26) is changed to a
trigonometric cosine as in [18]. For m = n = 2 the solution (26) can be compactified. With
the appropriate changes it represents the CSS (compare section 2.2)

w(ξ) =




4v′

3|A′| cos2

(√|A′|
4

ξ

)
for |√|A′|ξ/4| � π

0 otherwise.

(27)

Finally, a certain nonlinear dispersive evolution equation of non-K(n,m)-type will be
investigated that, nevertheless, can be considered as an element of the KdV equivalence class.
The equation under consideration reads

β(u2)ξξξ + εuξξξ = −α(u2)ξ − ut . (28)

With β(u2)ξξξ + εuξξξ = β((u + ε/(2β))2)ξξξ and ut = −vuξ the corresponding potential
representation is found with (8). Basically we have dealt with this problem already in
section 2.2. We may thus immediately assume the solution to have the form of a CSS
(27) added to a constant. In particular, the potential representation reads

(uξ )
2 = − α

4β
u2 +

(
− αε

4β2
+

(αε + vβ)

3β2

)
u − C1 − αε2

16β3
+

ε(αε + vβ)

6β3

with C2 set equal to zero to avoid singularities of the potential function. Setting

U(ξ) = u(ξ) +
ε

2β
− 2(αε + vβ)

3αβ
+

√
4(αε + vβ)2

9α2β2
− C1

the potential representation can be transformed into the form

(Uξ )
2 = − α

4β
U 2 +

√
(αε + vβ)2

9β4
− α2C1

4β2
U.

With the preceding analysis the solution for U(ξ) and thus for u(ξ) can be given immediately

u(ξ) = 4

3αβ

√
(αε + vβ)2 − 9/4α2β2C1 cos2

(√
α/β

4
ξ

)

− ε

2β
+

2(αε + vβ)

3αβ
−
√

4(αε + vβ)2

9α2β2
− C1.
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Figure 5. The equivalence class of connected K(n,m) equations with K(2, 1) as its representative,
i.e. the KdV equation.

The solution u(ξ) thus has the amplitude

b = 4

3αβ

√
(αε + vβ)2 − 9/4α2β2C1

and width

L = 4√
α/β

.

It moves with the speed

v′ = 3

(
− αε

4β2
+

(αε + vβ)

3β2

)

and is shifted by

δ = − ε

2β
+

2(αε + vβ)

3αβ
−
√

4(αε + vβ)2

9α2β2
− C1.

For C1 = 0, these equations simplify enormously and one finds the simple relation for the
speed

v′ = 3α

4β

(
ε

β
− b

)
.

Here one finds that bcrit = ε/β constitutes a critical amplitude. Solutions with b > bcrit move
to the left whereas solutions with b < bcrit move to the right. Solutions with b = bcrit are at
rest. This property of travelling modes in systems having both quadratic and linear dispersions
is documented in [11, 12, 19].
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4. Summary

In this paper we have presented a potential picture for nonlinear dispersive wave equations.
The potential picture provides a simplified representation of the original wave equation in terms
of a nonlinear first-order ordinary differential equation which is valid for the set of travelling
solutions. The potential representation allows for an easy and intuitive way to identify different
types of possible solutions. It proves to be extremely useful for the examination of nonlinear
dynamical systems, since it provides direct access to various properties of the solutions
without a need to solve the underlying nonlinear dispersive wave equation. Choosing the
dispersion function to be a power of the wavefunction one finds from a general investigation
of the potential picture that for localized solitary waves the degree of dispersion is restricted
to −1 < m � 1 whereas compact support solutions may only arise as possible modes in
systems with quadratic dispersion. The potential representation allows the determination of
the asymptotic behaviour of solitary waves; furthermore, the specification of this concept to the
so-called K(n,m) equations—a certain kind of nonlinear dispersive wave equations—directly
gives the relations between the amplitude of the solitary wave and its speed or the width of the
wave and its speed and height, respectively. Particularly for the compact support solution of
the K(2, 2) equation the width of the wave is independent of its speed or its height.

Furthermore, it has been shown that the potential representations of a certain K(n,m)

equation can be transformed into the respective potential representation of another K(n,m)-
type equation by a simple point transformation. Using the potential representation as
a consistency relation for the derivative of the wavefunction, K(n,m) equations can be
transformed directly into another. In this way the K(n,m) equations are divided into
equivalence classes, each containing the set of equations that are connected via the considered
point transformation. This transformation requires a further restriction of the admissible
solutions. In addition to the requirement of focusing on travelling solutions, the solutions are
specified by fixing the initially arbitrary integration constants to zero. An important property
of point transformations is their invertibility. All elements of an equivalent class are uniquely
connected with each other.
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Appendix. Derivation of the point transformation

We start from the general potential representation of K(n,m) equations

(uξ )
2 = 2A

m(m + n)
un−m+2 +

2v

m(m + 1)
u3−m + C1u

2−m + C2u
2−2m.

Assuming the point transformation u = θ(ω) one is lead to

(ωξ )
2 = 2A

m(m + n)

θn−m+2

θ ′2 +
2v

m(m + 1)

θ3−m

θ ′2 + C1
θ2−m

θ ′2 + C2
θ2−2m

θ ′2 . (29)
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Equation (29) is again the potential function of a K(N,M) equation (with different arguments
N and M ), i.e.

(ωξ )
2 = 2A′

M(M + N)
ωN−M+2 +

2v′

M(M + 1)
ω3−M + C ′

1ω
2−M + C ′

2ω
2−2M.

The four terms on the rhs constitute (in combination with (29)) four differential equations
that determine the transformation θ(ω). With only two free parameters M and N they can, in
general, not be fulfilled simultaneously so that we have to assume C1 = C2 = 0. One is left
with

θn−m+2

θ ′2 = AωN−M+2 θ3−m

θ ′2 = Bω3−M (30)

with

A′ = AM(M + N)

m(m + n)
A v′ = BM(M + 1)

m(m + 1)
v

or alternatively

θn−m+2

θ ′2 = Bω3−M θ3−m

θ ′2 = AωN−M+2 (31)

with

v′ = BM(M + 1)

m(m + n)
A A′ = AM(M + N)

m(m + 1)
v.

In the following, we will only deal with transformations (30). One finds in general

θ =
(A
B ωN−1

) 1
n−1

. (32)

Further we first consider the cases covered by m �= 1, n �= m,M �= 1, N �= M .
Straightforward integration of equations (30) leads to

θ =
(

1

A

(
m − n

M − N

)2

ωM−N

) 1
m−n

=
(

1

B

(
m − 1

M − 1

)2

ωM−1

) 1
m−1

.

These equations together with (32) yield the conditions

N − 1

n − 1
= M − N

m − n
= M − 1

m − 1

1

A

(
m − n

M − N

)2

= 1

B

(
m − 1

M − 1

)2

= 1 A = B

that are fulfilled by

M − N = q(m − n) M − 1 = q(m − 1) A = B = 1

q2
.

Therefore, the parameters M and N of the K(N,M) equation belonging to the transformed
potential representation are

M = q(m − 1) + 1 N = q(n − 1) + 1. (33)

Transformation (30) finally reads

θ = ω+q . (34)

The sign of the exponent is fixed by the requirement M,N > 0.
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Let us now turn to the cases in which either m = 1 or m = n or M = 1 or M = N . One
finds that the combinations m = M = 1 or m − n = M − N = 0 in case (33) are likewise
covered by (34). The remaining four combinations, i.e. m = 1 and N �= M,m = 1 and
N = M , m = n and N �= M , or m = n and M = 1, respectively, do not lead to solutions of
(30) that are in agreement with (32) and can thus be discarded. Equivalently, one finds for the
alternatively possible transformation (31)

M = q(n − m) + 1 N = q(n − 1) + 1.

Here the transformation reads

θ = ω−q .

In addition to the requirement M,N > 0 one has to assume in this case that n � m.
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